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Using Automated Metaphor 
Identification to Aid in Detection 
and Prediction of Schizophrenia



Motivation

 Schizophrenia affects 20-70 million worldwide. Global cost over $102 billion per year.

Mental health practitioners in short supply

Opportunity for AI to assist practitioners

Can we motivate an algorithm from clinical psychiatry literature?

 50 years of observations on “idiosyncratic” speech use among patients (Kuperberg 2010)

 Examples from Andreasen (1986):

Watches were called time vessels

Gloves were called hand shoes

 Billow et al (1997) : Patients use more metaphors that healthy controls but they tend to be 

bizarre



Metaphor Detection

 Based on token level in running text.

 The attorney demolished the prosecution’s arguments

 [   0         0        1                0             0                     0        ]

 HYPOTHESIS: People with schizophrenia produce signficantly more tokens tagged 

as metaphorical than do healthy controls



Metaphor Detection Algorithm

 Metaphor Detection Algorithm

 Based on the work of Do Dinh and Gurevych (2016).

 Trained on VU Amsterdam Metaphor Corpus (Steen et al. 2010)

 Supervised sequential learning: multilayer perceptron w/ sliding window

text tokens probabilities



Classification

Features:

 Token-level metaphoricity

 Additional features:

 Bizarreness 

 Measured using 2-gram likelihood

 Token-level sentiment (on 0-5 scale)

 Stanford sentiment analysis tool

Classifiers:

 RBF support-vector classifier, convex-hull classifier



Experiments and Results

Experiment 1: First-episode Schizophrenia 

 18 patients with schizophrenia, 15 healthy 

controls.

 Data: Open-ended transcribed interviews 

 Test and train using LOO-CV

Variables F-score Accuracy

Met+Biz+Sent 0.848 0.833

Met 0.778 0.733

Bedi et al 0.773 0.667

Mota et al 0.733 0.733

Baseline 0.723 0.567

Results:

 Metaphor identification algorithm tags a significantly higher proportion of tokens of 

schizophrenia patients than in healthy controls.

 Outperform the Mota et al and Bedi et al methods the majority baseline (p < .005)

 Combining with bizarreness and sentiment features improve performance 



Experiments and Results

Experiment 2: Clinically high risk youth

 Prodromal Psychosis: 

 34 youths at clinically high risk for schizophrenia

 Five suffered a first episode of psychosis within 2.5 years of transcribed 

interview

 Train and test on clinically high risk youth using LOO-CV

Results

 Correctly prognosticated 33 of 34, Bedi et al. predicted 34 of 34



Conclusion

 First demonstration of utility of metaphor identification for detection of 

schizophrenia

 Supports previous clinical psych research on language-use 

abnormalities in schizophrenia



Speech Markers of 
Oxytocin and MDMA 
Ingestion



Motivation

 Correct assessment of substance use disorders is essential for 

treatment planning and referral to adjunctive services.

 Clinical reviews are used for this purpose. Issues with objectivity and 
comprehensiveness.

 Speech data has the potential to provide quantitative information 

about mental states beyond subjective assessments.

Speech



Data

 Subjects: Ecstasy users (at least twice in their lifetime) were recruited and 
performed different speech tasks.

 32 subjects (12 F: 24.6 + 4.7 years, 20 M: 24.1 + 4.5 years)

 Protocol: All participants received, in randomized order, doses of placebo, 
MDMA at two different concentrations (0.75 mg/kg and 1.5 mg/kg), and 
Oxytocin.

 Procedure :

 Participants were asked to perform a monologue speech task of 5-
minute durations in each session.

 Recordings were manually transcribed.



Acoustic analysis

 Mel-Frequency cepstral coefficients (MFCCs). 

 characterize the voice spectrum similar to pitch perception in the human 

auditory system

 Vowel space (e.g. distribution of formants which measure vocal tract 

resonances)

 Voice stability (e.g. jitter, shimmer)

 Noise measurements (e.g. harmonics to noise ratio)

 Temporal features (e.g. articulation rate, pause duration distribution)

 Spectral characterization (e.g. slope of frequency spectrum)



Classification Accuracy

MDMA 0.75 vs. PBO 0.85*

MDMA 1.5 vs. PBO 0.71

MDMA 0.75 vs. MDMA 1.5 0.81*

Oxytocin vs. PBO 0.87

Results

 Statistical Analysis: Wilcoxon signed rank test 

with FDR correction

 F2 helps distinguish OT from PBO.

 Positive valence (elation, pleasure, etc.) 

resulted in higher F2 values.

 Median pitch distinguish MDMA low dose 

vs PBO.

 Classification experiments

 Nested leave-subject-out cross 

validation approach using Linear SVM 

and Random Forest. 
* Random Forest



Conclusion

 First study that uses characteristics of speech to identify subjects that 

are under the influence of MDMA and Oxytocin.

 Most relevant acoustic features correlate with positive valence, which 

supports previous research of drug effects using subjective analyses. 



Predicting Cognitive 
Impairments with 
Syntactic Analysis



Motivation

 In 2016, about 47 million people worldwide were affected by dementia

 131 million by 2050.

 Demented subjects have difficulties with both comprehension and 

production of syntactically (grammatically) complex utterances.

 Utterances of the demented adults were shown to be shorter and 

syntactically (grammatically) simpler than those produced by the 

nondemented adults.



Data

 DementiaBank Pitt Corpus

Cookie-theft picture description task

Mini mental state examination (MMSE) score for each sample



Syntactic Analysis

 Syntax trees obtained from Stanford parser

 Subtree patterns (node relations) in parse 
trees

 Context-free-grammar (CFG) Rules (Prior 
work use only subset)

 Sister, Dominance

 Node label, C-command 

 Feature extraction

 Collect statistics over all observed subtree 
patterns

 Unlike prior studies, we developed a 
language independent algorithm



Feature Extraction

 Each sample consists of multiple 

utterances, therefore multiple parse trees



Feature Extraction

 Each sample consists of multiple 

utterances, therefore multiple parse trees

 Multiple instances of the same node label

 Node label A occurs 3 times

 Node label C occurs 4 times

 Total nodes = 13

 Rate of node label A = 3/13



Feature Extraction

Each sample consists of multiple utterances, 
therefore multiple parse trees 

Multiple instances of the sister-relation in the 

sample

 (B,C), (C,D), (B,D)

sister(B,C) occurs 3 times

sister(B,D) occurs once

sister(C,D) occurs twice

Total sister relations =  6

 Rate of sister(B,C) = 3/6



Feature Extraction

 A rate feature was obtained for each instance of a relation by dividing

 the count of that instance

 e.g. sister(B,C) = 3, node(A) = 3

 by the sum of the counts of all instances of that relation

 e.g. total sister relations = 6, total nodes = 13

 Example features = Rate sister(B,C) = 3/6, Rate node-label(A) = 3/13

 Subtree-patterns: cfg-rule, sister, dominate, c-command, c-command-

via-node, dominate-via-node, node-label



Feature Extraction

Node scores

 Statistical parsing algorithms compute a score between 0 and 1 for 

each node

 indicating how grammatical the yield of a node is within the context of 

the entire sentence

 We obtained the node scores from Stanford Parser's data structures

 For each node-label:

 maximum, minimum, standard deviation, skewness and kurtosis

 e.g. max(NP), min(VP), std(N)



Feature Extraction

 We extracted a rate feature for each observed instance of all 
relations

 Thousands of distinct instances!

 We also computed 5 different statistics over node scores for all 

observed node labels



Feature Selection

 Feature-selection within leave-one-subject-out cross-validation 

folds without observing the entire data set

 Univariate selection methods 

 Pearson r

 Compute Pearson r between each feature and MMSE score 

 Eliminate those features whose Pearson r is p-val > 0.01



Feature Selection

 Feature-selection within leave-one-subject-out cross-validation 

folds without observing the entire data set

 Univariate selection methods

 Pearson r

 ANOVA(Analysis of Variance) f-test 

 P-values are modelled as an exponential decay curve and those 

at the tail of the curve are eliminated.



Feature Selection

 Feature-selection within leave-one-subject-out cross-validation 

folds without observing the entire data set

 Univariate selection methods (Pearson r and ANOVA f-test)

 Stability Selection

 Model the feature scores as an exponential decay curve, and 

eliminate the features at the tail of the curve 



Feature Selection

 Feature-selection within leave-one-subject-out cross-validation 

folds without observing the entire data set

 Univariate selection methods (Pearson r and ANOVA f-test)

 Stability Selection 

 Recursive Feature Elimination

 Estimator is trained on initial set of features and weights are assigned to 

each.

 Features with lowest weights are eliminated

 The process is recursively performed until the pruned set of features are 

exhausted.



Data and Experiments

 Data:

 DementiaBank Pitt Corpus

 Experiments:

 Baseline: CFG rules



Data and Experiments

 Data:

 DementiaBank Pitt Corpus

 Experiments:

 Baseline: CFG rules

 All subtree patterns including 

CFG rules

 Only Nodescores



Results: Feature selection

 Number of features drop after application 

of each selection method

 Column 2 shows median number of 

features across folds

All subtree patterns

Baseline: CFG Rules



Results: Feature selection

 Number of features drop after application 

of each selection method

 Column 2 shows median number of 

features across folds

 Pearson r and ANOVA reduce  number of 

features significantly

 RFE has minimal effect as it comes last

All subtree patterns

Baseline: CFG Rules



Results: Regression

 Significant improvement over only CFG 

rules

All subtree patterns

Baseline: CFG Rules



Results: Regression

 Significant improvement over only CFG 

rules

 Stability Selection decreases number of 

features significantly but decrease the 

performance slightly 

All subtree patterns

Baseline: CFG Rules



Results: Regression

 Significant improvement over only CFG 

rules

 Stability Selection decreases number of 

features significantly but decrease the 

performance slightly 

 State-of-the-art performance 

comparable to human inter annotator 

reliability scores

All subtree patterns

Baseline: CFG Rules



Results: Regression

 Significant improvement over only CFG 

rules

 Stability Selection decreases number of 

features significantly but decrease the 

performance slightly 

 State-of-the-art performance 

comparable to human inter annotator 

reliability scores

 Node scores alone: 

 Pearson r: 0.56 

 MAE:  4.28

All subtree patterns

Baseline: CFG Rules



Conclusion

 A novel method for syntactic analysis for assessing cognitive impairments:

 does not rely on pre-determined set of tree labels, or CFG rules

 we applied our method to Spanish and German with no modification at 

all

 Unlike a large number of related studies, feature-selection performed in 

each cross-validation fold without observing the entire data set. 

 State-of-the-art performance comparable to human inter annotator 

reliability scores



Summary

Three studies on using NLP on clinical interviews

 Semantic analysis

 First demonstration of utility of metaphor identification for detection of schizophrenia

 Acoustic analysis

 First study that uses characteristics of speech to identify subjects that are under the 

influence of MDMA and Oxytocin.

 Syntactic analysis

 A novel method for syntactic analysis that is language and formalism independent

 Validated by performing regression to predict the MMSE score


